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Abstract The interaction between bergenin and human
serum albumin (HSA) in AOT/isooctane/water microemul-
sions was studied by fluorescence quenching technique in
combination with UV absorption spectroscopy, circular
dichroism (CD) spectroscopy and dynamic light scattering
(DLS) technique. Fluorescence data in ωo 20 microemul-
sions revealed the presence of a binding site of bergenin on
HSA and its binding constants (K) were 1.64×104, 1.44×
104, 1.26×104 and 1.09×104 M−1 at 289, 296, 303, and
310 K, respectively. The binding of bergenin with HSA in
microemulsions was stronger than that in buffer solution.
The alterations of protein secondary structure in the
microemulsions in the absence and presence of bergenin
compared with the free form of HSA in buffer were
qualitatively and quantitatively analyzed by the evidence from
CD spectra. Enthalpy and entropy changes for the reaction
were calculated to be −14.45 kJ mol−1 and 30.76 J mol−1 K−1.
These results indicated that bergenin bound to HSA mainly
by a hydrophobic interaction in microemulsions which was in
agreement with the result of the molecular modeling study.
The DLS data suggested that HSA may locate at the interface
of the microemulsion and bergenin could interact with
them.
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Introduction

The microemulsion systems in question typically consist of
discrete, nanometer-sized water domains stabilised by a
surfactant, and dispersed in a continuous apolar phase [1]. It
has been used extensively as biological membrane models
to aid in the understanding of membrane chemistry [2].
Water is readily solubilized in the polar core, forming a so-
called “water pool”, which is described by the water-
surfactant molar ratio ωo (ωo=[H2O]/[S]). The aggregates
containing a large amount of water molecules (above ωo=
15) are usually called microemulsions whereas reverse
micelles correspond to droplets containing a small amount
of water (below ωo=15) [3]. Reverse micelles have been
used as model systems for studying various reactions in
confinement, for example, micellar catalysis [4, 5], enzy-
matic reactions [6, 7], protein purification [8] and so on. By
far, the most widely studied without microemulsion systems
are the ternary mixture consisting of the anionic surfactant
the sodium salt of bis(2-ethylhexyl)sulfosuccinate (AOT)/
nonpolar-solvent/water. It is optically transparent and the
change in the system could be followed by different
spectrophotometric methods.

Human serum albumin is the most abundant protein in
blood serum with a concentration of 0.63 mM. It is a
globular protein composed of a single polypeptide chain of
585 amino acid residues with a large α-helix. Its amino acid
sequence contains a total of 17 disulfide bridges, one free
thiol (Cys-34) and a single tryptophan (Trp-214). HSA
binds a number of the relatively insoluble endogenous
compounds such as unesterified fatty acids, bilirubin, and
bile acids and thus facilitates their transport throughout the
circulation. HSA is also capable of binding a wide variety
of drugs and xenobiotics [9, 10]. Binding of drugs to
plasma proteins is an important pharmacological parameter,
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since it frequently affects the distribution and elimination of
a drug as well as the duration and intensity of its
physiological action [11–13]. Bergenin (structure shown
in Fig. 1), is isolated from several medicinal plants and
exhibits various biological activities, such as antiarrhythmic
[14], hepatoprotective [15], anti-inflammatory [16] and
antitumor effects [17] as well as anti-HIV [18], neuro-
protective [19], antiulcer [20] and antitussive activities [21].
Given all these, bergenin is very worthy of study.

In previous works, a series of studies concerning the
interaction between drugs and proteins in aqueous solution
under physiological conditions have been reported [22–25].
Bernard Desfosses et al. [26] compared the behavior of
HSA in the presence of three chemically distinct ligands:
oxyphenylbutazone, dansylsarcosine, hemin in buffer and
reverse micelles. Daniel M. Davis et al. using fluorescence
quenching and CD studied the behavior of HSA in AOT
reverse micelles [27]. Suzana M. Andrade and Sílvia M. B.
Costa investigated the interaction of two water-soluble
freebase porphyrins with two drug-carrier proteins (human
serum albumin and β-lactoglobulin) in AOT/isooctane/
water reverse micelles by steady-state and transient-state
fluorescence spectroscopy [28]. Yet the detailed investiga-
tion on the binding interaction of bergenin and HSA via
diversiform analytical methods in membrane mimetic
environments has not been reported.

This study was designed to demonstrate a new array on
the interaction of bergenin with HSA in microemulsions.
Besides using fluorescence spectroscopy, UV absorption
spectroscopy, circular dichroism (CD) and dynamic light
scattering (DLS) methods were also applied. Attempts were
made to investigate the binding constant (K), the number of
binding sites (n) and thermodynamic parameters for the
reaction in the membrane mimetic environments. In
addition, the molecular modeling was studied with SGI
FUEL workstation. These were the first results on berge-
nin–HSA interactions, which illustrate the nature of the
complications in microemulsion.

Materials and methods

Materials

Sodium bis(2-ethylhexyl) sulfosuccinate (AOT) (Fluka,
≥96% purity) was used without further purification. Human
serum albumin (HSA), purchased from Sigma Chemical
Company, was used as received and its molecular weight
was assumed to be 66,500 to calculate the molar concen-
trations. All HSA stock solutions were prepared in the pH
7.40 buffer solution and were kept in the dark at 4°C.
Bergenin was of analytical grade, and obtained from the
National Institute for Control of Pharmaceutical and Bio-
products (Beijing, China), and the stock solution was
prepared in deionized water. Buffer solution (pH 7.40)
consisted of Tris (0.2 M) and HCl (0.1 M). Isooctane and
other reagents were of analytical grade and deionized water
was used throughout all the experiments. All pH were
checked with a PHS-10A acidity meter (Xiaoshan Science
Instrumentation Factory, Zhejiang, China).

AOT reverse micelle preparation

Microemulsion solutions of desired ωo (ωo=[H2O]/[AOT])
were prepared by adding protein stock solutions, drug
solutions or plain buffer (pH=7.40) to a 0.1 M AOT
solution in isooctane. Volume of additivity was assumed in
calculating AOT concentration and water AOT molar ratios.
The samples were gently shaken until complete clarifica-
tion. The final sample concentration was calculated
according to total mole of sample injected and the total
volume of the microemulsion.

Apparatus and methods

UV absorption and fluorescence spectroscopic
measurements

The absorption and steady state fluorescence measurements
were performed using a CARY-100 UV–visible spectro-
photometer (Varian, USA) and a RF-5301PC spetrofluor-
ophotometer (Shimadzu), respectively. The fluorescence
emission spectra were recorded from 280 to 500 nm
(excitation wavelength 280 nm) using 5/5 nm slit widths.
Synchronous fluorescence spectra of HSA encapsulated in
microemulsion in the absence and presence of increasing
amount of bergenin (0–4.95×10−5 M) were recorded 1ex:
280–500 nm.

Fluorometric titration experiments: 2.0 ml microemul-
sions containing appropriate concentration of HSA were
titrated manually by successive addition of a 1.91×10−4 M
of corresponding microemulsions with bergenin encapsu-
lated (to give a final concentration of 4.65×10−6–44.0×Fig. 1 The chemical structure of bergenin
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10−5 M) with trace syringes. The fluorescence intensities
were recorded at excitation and emission wavelength of 280
and 311 nm. All fluorescence intensities were measured at
four temperatures (289, 296, 303, and 310 K). An
electronic thermo regulating water-bath (NTT-2100,
EYELA, Japan) was used for controlling the temperature.
The fluorescence quantitative data obtained were analyzed
by the Scatchard equation [29] to calculate the binding
parameters

r=Df ¼ nK � rK ð1Þ

where r represents the number of moles of bound drug per
mole of protein, Df represents the molar concentration of
free drug, n and K are the number of binding sites and
binding constant, respectively. The quantitative analysis of
the binding drug−HSA was performed by fluorescence
quenching method, which was done by titrating with drug
at a given protein concentration. In the drug−HSA system,
the concentration of drug was much higher than the
concentration of HSA, so the concentration of drug bound
to HSAwas little, the free concentration of drug can be seen
as the total concentration of drug. The total concentration of
drug was calculated for the Scatchard plot instead of the
free concentration of drug (Df). On the other hand, drug
almost had no fluorescence at 311 nm when the excitation
wavelength was kept at 280 nm as shown in the following
section, so the fluorescence quenching of HSA can be seen
as the decrease of the protein fluorescence (ΔF) owing to
the interaction of drug with HSA. Therefore, the value of r
can be replaced by the content of the decrease of the
fluorescence of protein, that is, ΔF /F0 (F0 is the fluores-
cence of HSA in the absence of drug). To eliminate the
inner-filter effect, all the fluorescence intensities were
corrected according the relationship [30]:

Fcor ¼ Fobs � e AexþAemð Þ=2;

where Fcor and Fobs are the corrected and observed
fluorescence intensities of HSA, while Aex and Aem are
the absorbance of bergenin at the excitation (280 nm) and
the emission (311 nm) wavelengths of HSA in micro-
emulsion, respectively.

For the anisotropy measurements the excitation and
emission band widths were both 5 nm. Steady state
anisotropy (r) is defined by

r ¼ IVV � GIVHð Þ= IVV þ 2GIVHð Þ;
where IVV and IVH are the intensities obtained with the
excitation polarizer oriented vertically and the emission
polarizer oriented in vertical and horizontal orientation,
respectively. The G factor is defined as: G=IHV/IHH,
similarly, IHV and IHH are the intensities obtained with the

excitation polarizer oriented horizontally and the emission
polarizer oriented in vertical and horizontal orientation.

Thermodynamic data

Thermodynamic parameters were calculated based on the
temperature dependence of the binding constant in ωo 20
microemulsion for bergenin–HSA binding. The temper-
atures were used 289, 296, 303, and 310 K. The enthalpy
change (ΔH0) was calculated from the slope of the Van’t
Hoff relationship:

lnK ¼ �$H0
�
RTþ$S0

�
R ð2Þ

K is the binding constant at temperature T and R is gas
constant. The value of ΔS0 was obtained from linear Van’t
Hoff plot. The value of ΔG0 was calculated from the
equation:

$G0 ¼ $H0 � T$S0 ð3Þ

CD measurements

Circular dichroism (CD) spectra were measured with an
Olis DSM 1000 Circular Dichroism (American), using a
1 mm cell at 296 K. CD spectra (200–300 nm) were
taken in microemulsions with 3.0 μM HSA encapsulated
(ωo 20) and the results were taken as millidegrees. The α-
helical content of HSA was calculated from the molar
ellipticity ([θ]) at 208 nm according the equation % helix ¼

� θ½ �208�4000
� ��

33000 � 4000ð Þ� �� 100 [31]:

Fig. 2 The fluorescence spectra of HSA (3.0 μM) in microemulsions
with different ωo
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DLS data

Dynamic light scattering experiments were performed to
determine hydrodynamic diameter of AOT microemulsions
at room temperature. The measurements were done using a
BI-200SM Static and Dynamic laser light scattering system
(Brookhaven, America) coupled with a 4 W laser.

Molecular modeling studies

The crystal structure of HSAwas taken from the Brookhaven
Protein Data Bank (entry codes 1h9z) [32]. The potential of
the 3-D structure of HSA was assigned according to the
Amber 4.0 force field with Kollman-all-atom charges. The

initial structure of all the molecules was generated by
molecular modeling software Sybyl 6.9 [33]. The geometry
of the molecule was subsequently optimized to minimal
energy using the Tripos force field with Gasteiger–Marsili
charges. The FlexX program was used to build the
interaction modes between the bergenin and HSA.

Results and discussion

Determination of ωo value for microemulsions with HSA
encapsulated

To choose a suitable ωo value of microemulsions for HSA
encapsulated, in which microemulsion HSA’s stability is

Fig. 6 Scatchard plot for the bergenin–HSA in ωo 20 microemulsion.
HSA concentration: 3.0 μM; shaded square 289 K; shaded circle
296 K; shaded triangle 303 K; shaded inverted triangle 310 K; 1ex=
280 nm, 1em=311 nm

Fig. 3 UV absorption spectra of HSA (3.0 μM). In different ωo

microemulsions: (a) 15; (b) 30; (c) 20; (d) 10; (e) 25; (f) In Tris buffer,
pH=7.40

Fig. 4 The fluorescence spectra of bergenin–HSA system in ωo 20
microemulsion. The concentration of HSA was 3.0 μM while the
bergenin concentration corresponding to 0, 9.09, 17.3, 24.9, 31.8,
38.2, 44.0, 49.5 μM from a to h; (j) [bergenin]=49.5 μM in ωo 20
microemulsion; T=296 K; 1ex=280 nm, 1em=311 nm; (i) 3.0 μM
HSA in Tris buffer, pH=7.40; 1ex=280 nm, 1em=332 nm

Fig. 5 Synchronous fluorescence spectra of HSA (3.0 μM) in ωo 20
microemulsion with Δ1=60 nm in the absence and presence of
increasing amount of bergenin (μM): (a) 0; (b) 9.09; (c) 17.3; (d) 24.9;
(e) 31.8; (f) 38.2; (g) 44.0; (h) 49.5; (j) [bergenin]=49.5 μM in ωo 20
microemulsion; T=296 K; (i) 3.0 μM HSA in Tris buffer, pH=7.40
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better, a series of microemulsions with different ωo from 10
to 50 were prepared. When ωo equaled to 35 to 50, the clear
microemulsions were prone to turbid. When the ωo changed
from 10 to 25, the microemulsions maintained pellucid
which were more stable than ωo 30. According to the
research result of Susana Andrade et al. [34], HSA is a
spherical protein, the radius of its sphericity rp (Angstrom)=
0.7×Mr1/3, an empirical equation for radius of AOT micelle
inner core is given by rm (Angstrom)=4+1.5×ωo, when rp=
rm, the optimal ωo for HSA is expected to be around 16.
Therefore, 20 was chosen as the optimized ωo of the
microemulsion for the main fluorometric titration experi-
ments and spectroscopic measurements in which micro-
emulsion HSA had the higher fluorescence intensity in
Fig. 2. Furthermore, 20 was close to the calculated value 16
and literature values 21 [27], 22.4 [26], respectively.

Fluorescence and UV spectra of HSA in microemulsions
of different ωo

The fluorescence spectra of HSA in microemulsions with
various ωo were measured. In Fig. 2 there was no
significant shift in the fluorescence emission maximum
(1max) with the change of ωo. When ωo increased from 10 to
50 the 1max were all about 309 nm. There can be two
possible reasons for this result: (a) the microenvironment of
HSA remains essentially invariant with ωo, or (b) change in
microenvironment does occur, but is not reflected through
1max values. And the effect of ωo on the relative
fluorescence intensity was not large. It is noticed that the
properties of reverse micelle solubilized water are different
from those of bulk water, even at higher ωo values, and its
apparent microviscosity is six to nine times greater than that
of free aqueous solution [35]. Compare 309 nm with 1max

332 nm of HSA in buffer, it may indicate a less polar
environment of amino acid residues.

Figure 3 showed the UV absorption spectra of HSA in
different ωo microemulsions. There is an absorbance
intensity band of HSA with a maximum at around 210 nm
in aqueous solutions. In AOT microemulsions there was a
general tendency towards a red shift from 210 to 239 nm
for UV absorption spectra when compared with that in
water solution. The relative absorption intensities of peaks
at 277 nm which character the conjugated double bond of
tryptophan, tyrosine and phenylalanine residue to peaks at

239 nm were stronger than that in buffer solution. It means
that there is some difference between microenvironment of
HSA in microemulsions and in water. Variations of water
quantity in microemulsions influenced the absorbance of
HSA with a constant peak positions. The absorption of the
HSA in ωo 25 microemulsion was relatively weaker. The
possible reasons were that the conformation of HSA was
affected most by the microenvironment in ωo 25 micro-
emulsion or the stability of HSA in this microemulsion was
comparatively lower.

Analysis of fluorescence quenching of HSA by bergenin
in microemulsion

Fluorescence quenching of the single tryptophan residue in
HSA was used to measure drug-binding affinity. The
fluorescence spectra of HSA in microemulsion before and
after addition of bergenin compared with the native HSA in
the pH 7.40 Tris buffer were measured with the excitation
wavelength at 280 nm and their representative spectra were
shown in Fig. 4. HSA had a strong fluorescence emission
with a peak at 311 nm in ωo 20 microemulsion, a large shift
of emission to a shorter wavelength from 332 nm of HSA
in aqua. It indicated perturbations of the amino acid residue
microenvironment. The intensity of HSA in microemulsion
was much higher than in aqueous solutions. Bergenin had a
weak fluorescence emission at 380 nm under the presence
experiment conditions in microemulsion. With gradual
increase in drug concentrations, typical dual fluorescence
behavior was observed. It can be seen that the binding of
HSA and bergenin in microemulsion quenched the intrinsic
fluorescence of the HSA. Moreover, the occurrence of an
isoactinic point at 375 nm might also indicate the existence
of bound and free bergenin in equilibrium [24]. This
behavior was more visible in the succeeding synchronous
fluorescence spectra of HSA in the presence of bergenin in
ωo 20 microemulsion.

Table 2 Binding constants of bergenin–HSA in microemulsions of
different ωo and buffer solution at 296 K

wo 10 15 20 25 30 Buffer

K (×104 M−1) 1.39 1.42 1.44 1.47 1.46 1.29

Table 1 Binding parameters and thermodynamic parameters of bergenin–HSA in ωo 20 microemulsions

T (K) K (×104 M−1) n Regression coefficient ΔG0 (kJ mol−1) ΔH0 (kJ mol−1) ΔS0 (J mol−1 K−1)

289 1.64 0.94 0.99513 −23.33 −14.45 30.76
296 1.44 1.01 0.99240 −23.55
303 1.26 1.08 0.99856 −23.76
310 1.09 1.18 0.99757 −23.98
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The synchronous fluorescence spectra are frequently
used to characterize the interaction between fluorescence
probe and proteins since it can provide information about
the molecular microenvironment in a vicinity of the
chromospheres molecules. According to Miller [36], with
large Δ1 values such as 60 nm, the synchronous fluores-
cence of HSA is characteristic of tryptophan residue.
Synchronous fluorescence spectral changes of HSA upon
addition of bergenin with varied concentration in ωo 20
microemulsion when Δ1=60 nm were displayed in Fig. 5.
Compared with HSA in the Tris buffer, protein encapsula-

tion immediately resulted in a shift of emission to a shorter
wavelength from 339 to 333 nm. The addition of the drug
led to a dramatic decrease in the fluorescence intensity with
a bathochromic shift to 333–339 nm. It is considered that
the 1max of the tryptophan residues is relative to the polarity
of microenvironment. 1max at 330–332 suggests that
tryptophan resides are located in the non-polar region, that
is, they are buried in a hydrophobic cavity in HSA; 1max at
350–352 nm indicates that tryptophan residues are exposed
to water, that is, the hydrophobic cavity in HSA is
disagglomerated and the structure of HSA is looser. Thus
Fig. 5 may show that after introducing HSA into micro-
emulsion, there was a less polar environment of tryptophan
residues. And bergenin mainly bound to the hydrophobic
cavity of HSA, which was in accordance with the results
from molecular modeling and the thermodynamics param-
eters obtained by the experimental data as follows. It was
also indicated that the reaction between HSA and bergenin
in microemulsion led the polarity around the tryptophan
residues increased.

Binding constant and number of binding sites

The quantitative analysis for HSA–bergenin at four differ-
ent temperature in ωo 20 microemulsions was carried out
using the Scatchard equation Eq. 1. In Fig. 6 the
satisfactory linearity of Scatchard plots may indicate that
bergenin binds to a class of binding sites on HSA and

Fig. 8 The binding mode be-
tween bergenin and HSA, only
residues around 10 Å of berge-
nin are displayed. The residues
of HSA are represented using
gray ball and stick model and
the drug structure is represented
by a green one. The hydrogen
bond between bergenin and
HSA is represented using yellow
dashed line

Fig. 7 Van’t Hoff plot for the interaction of HSA and bergenin in ωo

20 microemulsion
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approximate process of the Eq. 1 in “Apparatus and
methods” section is logical. The fluorescence quenching
data may indicate that the binding site of bergenin on HSA
may be the site І in the hydrophobic cavity of sub-domain
IIA. It could make the bergenin much closer to the
tryptophan residues. The binding constants K decreased
with the increasing temperature in microemulsions. Berge-
nin can be removed by the proteins in the body. The
binding constants and the number of binding sites were
summarized in Table 1. In Table 2 the binding constants K
were listed for bergenin associated with HSA in micro-
emulsions of different ωo and in buffer solution at 296 K.
Binding constants K changed a little in different water pools
which have the diverse water capacity. So the change of
microenvironment in microemulsions had very small effect
on binding of bergenin and HSA. While K of the buffer
solution was lower to a small degree than the micro-
emulsions’, this may indicate greater accessibility of
bergenin toward HSA when HSA was encapsulated in
microemulsion. It may imply that HSA associates with the
interface of microemulsion and an interesting conforma-
tional change is induced in the protein’s structure.

Binding mode

There are several types of non-covalent interactions modes
such as hydrogen bond, van der Waals force, hydrophobic
interaction force, and electrostatic force, etc [37]. The
thermodynamic parameters, enthalpy (ΔH) and entropy
(ΔS) of reaction are important for confirming binding
mode. For this reason, the temperature-dependence of the
binding constant of microemulsion (ωo 20) was studied.
The temperatures chosen were 289, 296, 303, and 310 K so
that HSA does not undergo any structural degradation.
According to the binding constants of bergenin to HSA
obtained at the four temperatures in ωo 20 microemulsions
above, the values of ΔH0 and ΔS0 were obtained from
linear Van’t Hoff plot (Fig. 7) and presented in Table 1. The
free energy change ΔG0 was estimated from the Eq. 3. As
shown in Table 1, ΔH0 and ΔS0 for the binding reaction
between bergenin and HSA were found to be −14.45 kJ
mol−1 and 30.76 J mol−1 K−1. Thus, the negative sign for
ΔG0 means that the binding process was spontaneous and
the formation of bergenin–HSA coordination compound
was an exothermic reaction accompanied by positive ΔS0

value. For typical hydrophobic interactions, both ΔH0 and
ΔS0 are positive, while negative ΔH0 and ΔS0 changes
arise from van der Waals force and hydrogen bonding

formation in low dielectric media. However, negative ΔH0

might play a role in electrostatic interactions [38]. There-
fore, it is not possible to account for the thermodynamic
parameters of bergenin–HSA coordination compound on
the basis of a single intermolecular force model. The
binding process of bergenin to HSA in the microemulsions
might involve hydrophobic interaction strongly as
evidenced by the positive values of ΔS0, but the electro-
static interaction could also not be excluded.

Molecular modeling study of the interaction between HSA
and bergenin

Descriptions of the 3-D structure of crystalline albumin
have revealed that HSA comprises three repeating domains
(I–III): I (residues 1–195), II (196–383), III (384–585), and
each of which is divided into two sub-domains (A and B).
Sudlow et al. [39] have suggested two main distinct binding
sites on HSA, site I and site II, which locate in the
hydrophobic cavities of sub-domains IIA and IIIA, respec-
tively, and one tryptophan residue (Trp-214) of HSA is in
sub-domain IIA [40]. There is a large hydrophobic cavity
present in subdomain IIA that many drugs can bind to.

SGI FUEL workstation was used to calculate the partial
binding parameters to study the binding site of the HSA–
bergenin system, and the best energy ranked result was
presented in Fig. 8. It can be seen that bergenin was situated
within subdomain IIA in Sudlow’s site I formed by helices.
The bergenin molecule was located within the binding

Fig. 9 UVabsorption spectra of ωo 20 microemulsions with HSA (3.0
μM) encapsulated in the presence of different bergenin concentrations
(μM): (a) 0; (b) 9.09; (c) 17.3; (d) 31.8; (e) 54.5; (f) [bergenin]=9.09
μM, T=296 K

Table 3 Fluorescence anisotropy (r) of HSA in different ωo microemulsions and buffer solution at 296 K

wo 10 15 20 25 30 35 40 45 50 Buffer

r 0.1035 0.1074 0.1025 0.1024 0.0980 0.1054 0.1024 0.0970 0.1034 0.0783
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pocket, and it was important to note that the only
tryptophan residue (Trp-214) of HSA was in close
proximity to C- and B-rings, suggesting the existence of
hydrophobic interaction between them. Further, this finding
provided a good structural basis to explain the efficient
fluorescence quenching of HSA emission in the presence of
bergenin. The interaction between bergenin and HSA was
not exclusively hydrophobic in nature since there were
many polar and charged amino acid residues on the protein
surface, which play a subordinate role in stabilizing the
bergenin molecule via electrostatic interaction. It was in
agreement with the binding mode study. On the other hand,
there were hydrogen bonding interactions between 6-O of
bergenin and the residue Arg-218 of HSA; 15-O and Arg-
218, Arg-222; 20-OH and Lys-195, Asp-451; 21-OH and
Ala-291; 23-OH and Glu-450; The results suggested that
the formation of hydrogen bond decreased the hydro-
philicity and increased the hydrophobicity to stability in
the bergenin–HSA system. The calculated binding Gibbs
free energy (ΔG0) was −19.72 kJ mol−1, which was not
very close to the experimental data (−23.55 kJ mol−1) to
some degree. A possible explanation may be that the X-ray
structure of the protein from crystals differs from that of the
microemulsions system used in this study. Therefore, the
results of modeling indicated that the interaction between
bergenin and HSA was dominated by hydrophobic force,
which was in accord with the binding mode study.

Fluorescence anisotropy of HSA in various microemulsions

The fluorescence anisotropy measurements of HSA in AOT
microemulsions as a function of increasing amounts of
water were carried out when 1ex was 280 and the result was
shown in Table 3. It is evident that as ωo increased, very
little change in anisotropy (r) was observed, indicating that
there was no appreciable additional change in the average

mobility of HSA molecules. It is noteworthy that all the r
were higher than that obtained for HSA in buffer solution,
which showed that the mobility of the chromophores inside
microemulsion droplets was more limited than in aqueous
solution. This effect could be explained by interactions
between amino acid side-chains and AOT sulfonate groups
or the structured interfacial water layer in which these were
encapsulated. It may also be explained simply by the
increase of water microviscosity when water acts as a
component of the microemulsion.

Binding studies between bergenin and HSA
in microemulsions using UV and CD spectrum

Figure 9 was the UV absorption spectra of HSA with
increasing amount of bergenin in microemulsion (ωo 20).
As can be seen in Fig. 9, the absorbance of HSA in
microemulsion at 239, 279 nm decreased with the addition
of bergenin. This result clearly indicated the interaction
between bergenin and HSA.

CD spectrum was applied to analyze the changes of
HSA secondary structure in the absence and presence of
bergenin in microemulsions and compared them with
spectrum in buffer; the results were shown in Fig. 10. The
CD spectra of HSA exhibit characteristic features of the α-
helical structure of protein with negative bands in the
ultraviolet region at 208 and 222 nm. In Fig. 10, the CD
spectra of free HSA buffer solution had a characteristic of
the typical (α + β)-helix structure with negative bands at
208 and 220 nm. After protein encapsulation in micro-
emulsion, the band intensity of negative Cotton effect of
HSA at 208 and 220 nm reduced, indicating the consider-
able changes in the protein secondary structure with the
reduction of the α-helical content in HSA. There may be
some co-effect factors contributing to the changes: the
unusual properties of water localized in the interior of
microemulsions could bring about a different chiral
environment for HSA; the contact of HSA molecules with
isooctane in the process of solubilization can change the
structure of HSA; the interaction of AOT and HSA can also
change the structure of protein. The binding of bergenin to
HSA in microemulsion kept on decreasing the α-helical
content in protein and increased the disorder structure
content in the HSA. From the above results, there may be
the formation of complex between HSA and bergenin in
microemulsion. The quantitive CD data exhibited a reduc-

Table 4 Hydrodynamic diameter (DH) of AOT microemulsions
without HSA and with HSA (8.1 μM), HSA + bergenin ([HSA]/
[bergenin]=1:5) at ωo 20; T=296 K

No HSA HSA HSA + bergenin

DH (nm) 10.3 6.3 4.2

Fig. 10 CD spectra of the HSA–bergenin system. (a) 3.0 μM HSA in
Tris buffer; (b) 3.0 μM HSA in ωo 20 microemulsion; (c) 3.0 μM
HSA in the presence of 15.0 μM bergenin in ωo 20 microemulsion
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tion of α-helices from 55.58% (free HSA in buffer) to
41.10% (free HSA in microemulsion), from 41.10% to
24.74% (bound HSA in microemulsions). This suggested
that, in spite of the impact of the environment of micro-
emulsion on the secondary structure of HSA, bergenin
could interact with the protein in microemulsion. From CD
measurements, Desfosses et al. [26] showed that upon
hosted into AOT microemulsions of ωo 22.4, the α-helical
content of HSA decreased by approximately 15%.

DLS data

The dynamic light scattering data was presented in order to
have insight on the localization of HSA and its interaction
with bergenin which occurred after encapsulation in AOT
microemulsions. Hydrodynamic diameters (DH) of AOT
microemulsions with and without HSA, HSA binding drug
at ωo 20 were measured (Table 4). The DH obtained for ωo

20 microemulsion was 10.3 nm, which was comparatively
close to the literature’s value [41]. After HSA immersing in
AOT microemulsion, DH decreased to 6.3 nm. According
to Pileni [3], in microemulsion the contribution of the
solute to the interface or to the polar volume induces an
increase either in the interfacial area, dΣ, or in the polar
volume, dV. The water pool radius expressed as a sphere
(Rw=3(V+dV)/Σ+dΣ) changes by increasing either dV or
dΣ. A probe located at the interface induces a decrease in
the water pool radius due to an increase in the interface, dΣ,
with a constant volume, V. Therefore HSA may locate at the
interface inducing a decrease in the water pool, which may
have relation to the change of secondary structure in HSA.
Upon adding bergenin, the DH decreased to 4.2 nm. The
reasons may be that when bergenin entered the water pool
of microemulsion which contained the HSA, bergenin
interacted with HSA at the interface, so the contribution
of HSA–bergenin complex to the interface of water pool
was different from the HSA’s. Another possible reason was
that after interacting with bergenin, the interaction between
HSA and AOT was changed, which may affect the size of
water pool.

Conclusions

In this paper, we chose AOT/isooctane/water microemul-
sions as membrane mimetic environments for the binding
of bergenin and HSA which was studied by fluorescence
quenching technique, UV absorption spectroscopy, CD
spectroscopy, dynamic light scattering technique and
molecular modeling method. The work demonstrated that
the secondary structure of HSA was influenced after
encapsulating the protein into microemulsions. Addition
of bergenin to the microemulsion with HSA encapsulated

kept on changing the conformation of HSA, which was
proved by the analysis data of CD spectrum. HSA may
locate at the interface of the microemulsion and had the
interaction with bergenin according to the DLS data. The
main interaction between HSA and bergenin was hydro-
phobic force but the electrostatic interaction can also not be
excluded. The studies presented also clearly indicated that
bergenin was a quencher for HSA and bound to HSA with
higher affinities in microemulsions than in buffer solution.
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